KISS: Keep It Simple Scholars (or, , ,)

Presenters: Steve Tucker & Steve McKeegan

Construction Technology’s Road to Accreditation:

“What a long strange trip it’s been”
Construction Tech: Accredited by ACCE
American Council for Construction Education
Accreditation Granted in: 1997; 2003; 2009

External Accreditation

Process:
1. Self-Study: (similar to our “Internal” Program Review.)
2. Site Visit by ACCE
3. **Best Case Scenario**: 6 year accreditation with a 3rd Year Report.
Re-Accreditation 2009

ACCE Findings:

1. The CT Outcome Assessment Process remains a weakness.

2. CT Program re-accredited for 6 years, with $1^{st}$, $2^{nd}$, & $3^{rd}$ Year Reports. (See Previous Slide)

3. 2010: ACCE approved CT $1^{st}$ Year Report “with serious reservations.” (See Bullet #1)

4. ACCE appoints mentor for CT Program.
Thoughts on Outcomes Assessment

Pre-2009:

“I’ve got it, too, Omar ... a strange feeling like we’ve just been going in circles.”

“Go back to sleep, Chuck. You’re just havin’ a nightmare—of course, we are still in hell.”
Thoughts on Outcomes Assessment

Post 2011:

"Yeah, Clem, I hurt. But y'know, it's a good kind of hurt."

"You know, we're just not reaching that guy."

ps: it will help you & your students.
Finally, Here’s How It Got Better!

Lots of Help from:

1. ACCE Mentor
2. Construction Tech Colleagues
3. Non-Construction Tech Colleagues (i.e. those of you who felt sorry for me !!)
4. Chain of Command: Thank God they have patience !!
Idea #1: Make a Schedule!
Advice: Make sure you look @ the (^%^(*& schedule!!

Yearly Outcomes Assessment Timetable
- **Fall Semester**:
  - **September**:
    - Generate new list of incoming Freshmen for Performance Outcomes
    - Resend “Action Items” from previous May to Industry Advisory Council (IAC)
  - **October**: Industry Advisory Council (IAC) Meeting:
    - Review Assessment surveys from previous spring semester.
    - Action Items: Require College approval or changes in-house?
  - **November**:
    - AGC National Scholarships applications due. (Typically November 1st)
  - **December**:
    - Performance Outcomes: Update @ end of semester
Idea # 2: Surveys: Who do we survey?

- **Spring Semester:**
- **May:** (Finals Week) Assessment Surveys:
- 2\textsuperscript{nd} year Construction Technology (CT) students.
- 4\textsuperscript{th} year Construction Management (CM) students: (Required: Students who were in CT AAS program & completed their internships)
- Employers of CM Interns: Use their Performance Evals!!
- **End of May**
- “5\textsuperscript{th} year out” CT Graduate Surveys. (2006 Graduates for last year’s report.)
- Tabulate and assess data: Send to Dean, Provost, & IAC
- Generate “Action Items” to be considered in October w/ IAC
Question #1: Identification: What are you currently?

1. Construction Technology Student
2. Construction Management BT Senior
3. Construction Technology Alumnus

Sample Question

Use Clickers!!
Question #20: Construction Courses:
P&P of Wood Construction
Commercial Construction
Concrete & Masonry Construction

1. Exceeded Expectations
2. Met Expectations
3. Below Expectations

Rating the value of the required Construction Technology courses at Delhi.

Ps: these are NOT actual %’s!!
Survey Analysis: For Current Students
Clicker Reports Can give this analysis

19.) Q#20: Construction Courses: P&P of Wood Construction
Commercial Construction Concrete & Masonry Construction
(multiple choice)
Responses

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exceeded Expectations</td>
<td>13</td>
<td>52%</td>
</tr>
<tr>
<td>Met Expectations</td>
<td>12</td>
<td>48%</td>
</tr>
<tr>
<td>Below Expectations</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Totals</td>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>

Survey Analysis: For Graduates

Next Step: (we hope)
Web-based surveys: Survey Monkey; Google Docs
Idea # 3: Perf. Outcome Tracking

A. General Outcomes for ACCE
   • Generated from Specific course tasks
   • Updated Each Semester
### ENTERING CLASS OF 2010–11

#### PERFORMANCE OUTCOMES

<table>
<thead>
<tr>
<th>COURSE</th>
<th>Student 1</th>
<th>Student 2</th>
<th>Student 3</th>
<th>Student 4</th>
<th>Student 5</th>
<th>Student 6</th>
<th>Student 7</th>
<th>Student 8</th>
<th>Student 9</th>
<th>Student 10</th>
<th>Student 11</th>
<th>Student 12</th>
<th>Student 13</th>
<th>Student 14</th>
<th>Student 15</th>
<th>Student 16</th>
<th>Student 17</th>
<th>Student 18</th>
<th>Student 19</th>
<th>Student 20</th>
<th>Student 21</th>
<th>Student 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify structural dimension grades of lumber and understand the grade stamp</td>
<td>AECT 110</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Generate a buildable first floor residential plan using Autocad given appropriate design criteria</td>
<td>ARCH 110</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Create a Wall Plate Layout given a floor plan and appropriate materials</td>
<td>CNST 110</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Generate load tracing for a given structure.</td>
<td>AECT 150</td>
<td></td>
</tr>
<tr>
<td>Perform a gradation, proctor, and in-place density test.</td>
<td>CNST 150</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Generate a topographic survey using appropriate survey instruments.</td>
<td>CNST 160</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Analyze the design and estimate the materials for a commercial curtain wall system</td>
<td>CNST 210</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Create a critical path construction schedule given engineering blueprints</td>
<td>CNST 210</td>
<td></td>
</tr>
<tr>
<td>Complete a 10 hour OSHA construction site safety class</td>
<td>CNST 230</td>
<td></td>
</tr>
<tr>
<td>Create a complete building estimate in an Excel spreadsheet.</td>
<td>CNST 260</td>
<td></td>
</tr>
<tr>
<td>Create a sample building contract which is in compliance with New York State Building Codes.</td>
<td>CNST 270</td>
<td></td>
</tr>
<tr>
<td>Create a plumbing isometric drawing for a commercial rest room facility</td>
<td>AECT 280</td>
<td></td>
</tr>
</tbody>
</table>

**AVERAGE**

2.8 2.7 1.4 2.6 1.7 4 3.2 4 2.4 3.2 3 2.7 3.5 3 3.2 4 2 3 3.5 2.8 2.6 3.8 3
### Idea #3: Perf. Outcome Tracking

#### B. Example of Specific Course Task

<table>
<thead>
<tr>
<th>CNST 150: Concrete &amp; Masonry Construction</th>
<th>NAME:</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Testing Checklist</td>
<td>Score:</td>
<td></td>
</tr>
</tbody>
</table>

#### 1. Soil Classification

<table>
<thead>
<tr>
<th>POINT TOTAL</th>
<th>ACTUAL POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUE 5/13 @ 5pm</td>
</tr>
</tbody>
</table>

**Sieve Test**

- a. Sieve Data Sheet: Sample Calcs
  - 20
  - Xtra Credit: EXCEL

- b. Sieve Graph
  - 20
  - Data Sheets

- c. Calculate $C_p$: See Graph for formula
  - 5

- d. Calculate $C_s$: See Graph for formula
  - 5

**Classification:** List ALL Steps!!

- a. USC
  - 20

- b. New York State Specs
  - 20

**Comments/Conclusions**

- a. Why are soils classified? 
  - 10

- b. What types of projects could this soil be used for? 
  - 10

- c. List any data errors. 
  - 5

**Soil Washing Calcs**

- 10

#### 2. Proctor Test

<table>
<thead>
<tr>
<th>POINT TOTAL</th>
<th>ACTUAL POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUE 5/13 @ 5pm</td>
</tr>
</tbody>
</table>

- a. Proctor Data Sheet: Sample Calcs
  - 20

- b. Proctor Curve:
  - $\gamma_{\text{max/dry}}$ & OMC
  - 20

- c. Use Relative Compaction = 98% 

  $\gamma_{\text{req'd in Field}} = \underline{}$ 
  - 10

  Show Calcs

  $M_{\text{clay}} = \underline{\%}$ to $\underline{\%}$
  - 10

**Comments/Conclusions**

- a. Is your curve "bell shaped"? 
  - 5

- b. How are the results used in the field? 
  - 10

- c. List any data errors. 
  - 5

#### 3. Sand Cone Test

<table>
<thead>
<tr>
<th>POINT TOTAL</th>
<th>ACTUAL POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUE 5/13 @ 5pm</td>
</tr>
</tbody>
</table>

- a. Sand Cone Data Sheet: 
  - 20

- b. $\gamma_{\text{field/dry}} = \underline{}$ Meet $\gamma_{\text{req'd}}$? 
  - 20

- c. $M_{\text{field}} = \underline{}$ Meet $M_{\text{req'd}}$? 
  - 20

- d. Course of Action Req'd by Contractor 
  - 20

**Based on field test results.**

**Comments/Conclusions**

- a. How are the results used in the field? 
  - 10

- b. List any data errors. 
  - 10

#### 4. Neatness & Clarity

<table>
<thead>
<tr>
<th>POINT TOTAL</th>
<th>ACTUAL POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUE 5/13 @ 5pm</td>
</tr>
</tbody>
</table>

- 25

**Total Parts 1-4**

<table>
<thead>
<tr>
<th>POINT TOTAL</th>
<th>ACTUAL POINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>330</td>
<td></td>
</tr>
</tbody>
</table>

**ATTACH THIS SHEET WITH YOUR (Stapled) SUBMISSIONS!!!**